Gradient line reaction path of ammonia addition to formaldehyde

Ruslan M. Minyaev* and Evgenii A. Lepin

Institute of Physical and Organic Chemistry, Rostov State University, 344090 Rostov-on-Don, Russian Federation. Fax: +7 8632 285 667; e-mail: minyaev@ipoc.rnd.runnet.ru

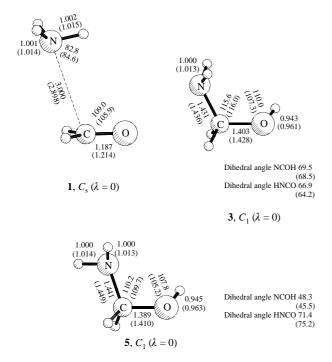
The gradient line reaction path of the gas phase ammonia addition to formaldehyde has been calculated by using the RHF/6-31G** and MP2(full)/6-311++G** methods and it has been shown that two successive transition state structures lie on the path.

Nucleophilic carbonyl additions are one of the most fundamental reactions in chemistry and biochemistry. ^{1,2} Therefore, elucidation of the pathways of such reactions on the corresponding potential energy surfaces (PES) plays an important role in a study of their detailed mechanism. ^{2–7} In this respect, ammonia addition to formaldehyde in the gas phase is a convenient molecular model with which to study all interactions governing the system along a reaction path and therefore this system was investigated rather well by theoretical methods. ^{2,8–11} Earlier, Scheiner *et al.*, ⁸ using *ab initio* methods, predicted that NH₃ formed a weak pre-reaction complex **1** with a N···C distance (*R*) of 2.6 Å at the beginning part of the reaction pathway.

SCF/3-21G calculations on **1** subsequently performed by Williams¹⁰ gave R = 2.8 Å. However, SCF/6-31G* and MP2/6-31G* calculations predicted strong repulsion between NH₃ and H₂CO within the range of $R \ge 2.5$ Å, ¹⁰ in disagreement with earlier results. ^{8,9} Recent *ab initio* calculations¹¹ at the MP2/6-311G(2d) level predicted a low-energy complex **1** bounded at R = 3.00 Å.

Transition state 2 and product structures 3 for ammonia addition to formaldehyde have been well studied by *ab initio* SCF/3-21G calculations. 9,10 However, a continuous reaction pathway for NH $_3$ addition to H $_2$ CO on the corresponding PES has not been constructed up to now and without this pathway one can not obtain a correct reaction mechanism. 12 Here

Table 1 Total energy ($E_{\rm tot}$ in hartree), $^{\mu}$ relative energy (ΔE in kcal mol $^{-1}$), the number of negative hessian eigenvalues (λ), zero point energy (ZPE in hartree), relative energy with including ZPE ($\Delta E_{\rm ZPE}$ in kcal mol $^{-1}$), the imaginary or the smallest positive frequency (i ν/ν_1 in cm $^{-1}$) predicted by RHF/6-31G** and MP2(full)/6-311++G** (in parentheses) methods for structures **1–4** of NH₃···H₂CO and NH₃ and H₂CO molecules.


Structure	$E_{\rm tot}$	ΔE	λ	ZPE	ΔE_{ZPE}	$i\nu/\nu_1$
$\overline{1, C_s}$	-170.07067	0	0	0.06805	0	49.3
-	(-170.71960)	(0)	(0)	(0.06396)	(0)	(33.3)
2, C _s	-169.99585	46.9	1	0.06964	47.9	i1812.1
5	(-170.66524)	(34.1)	(1)	(0.06496)	(34.7)	(i1460.6)
3, C_1	-170.08532	-9.2	0	0.07521	-4.7	307.3
•	(-170.73641)	(-10.5)	(0)	(0.07102)	(-6.1)	(322.4)
4 , C _s	-170.08120	-5.9	1	0.07424	-4.1	i292.9
5	(-170.73279)	(-8.3)	(1)	(0.06994)	(-5.6)	(i294.4)
5 , <i>C</i> ₁	-170.08437	-6.1	0	0.07524	-2.7	279.7
•	(-170.73553)	(-8.3)	(0)	(0.07001)	(-4.5)	(262.5)
NH_3 , C_{3v}	-56.19554	0	0	0.03681	0	1140.9
3 3,	(-56.43468)	(0)	(0)	(0.03486)	(0)	(1072.1)
H_2CO, C_2	_113.86974	0	0	0.02898	0	1335.6
	(-114.27923)	(0)	(0)	(0.02698)	(0)	(1208.2)

^a1 hartree = $2625.4497 \text{ kJ mol}^{-1}$. ^b1 kcal mol⁻¹ = $4.184 \text{ kJ mol}^{-1}$.

ab initio RHF/6-31G** and MP2(full)/6-311++G** calculations 13,14 for the gradient line reaction path 12 of the gas phase ammonia addition to formaldehyde are reported. The calculations show that the reaction follows a more complicated pathway $1 \Rightarrow 2 \Rightarrow 4 \Rightarrow 5a,b \Rightarrow 3a,b$ rather than $1 \Rightarrow 2 \Rightarrow 3$. This implies that the system during the reaction firstly passes through two successive transition state structures 2 and 4, then at point 4 it changes its direction of movement and arrives at two equivalent (mirror image forms) products 5a and 5b. Only

from ${\bf 5a}$ and ${\bf 5b}$ can the system pass to two conformers ${\bf 3a}$ and ${\bf 3b}$ by internal rotation around the C-N bond.

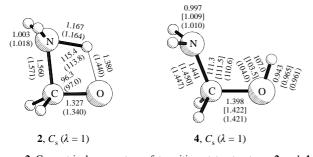

According to RHF/6-31G** and MP2(full)/6-311++G** calculations, structures 1, 3 and 5 correspond to minima ($\lambda = 0$, hereafter λ denotes the number of the negative hessian eigenvalues) and 2 and 4 to saddle points ($\lambda = 1$) on the NH₃···H₂CO PES. Geometrical and energy parameters of 1-5 calculated by ab initio methods are presented in Figures 1 and 2 and Table 1. As can be seen from Figures 1 and 2, the geometries of 1, 2 and 3 are in excellent agreement with data obtained earlier. 10,11 The energy barrier of reaction $1 \rightleftharpoons 2 \rightleftharpoons 4 \rightleftharpoons 5a,b$ equals 46.9 and 34.1 kcal mol⁻¹ calculated by the RHF/6-31G** and MP2(full)/6-311++G** methods, respectively. The second value is close to 36.7 kcal mol⁻¹ obtained by the RHF/3-21G calculations. ¹⁰ The important feature of the path is that the system descends from saddle point 2 directly to the neighbouring saddle point 4 along the unique gradient line (steepest descent line). At point 4 the system changes its direction of motion and transfers the first gradient line to the orthogonal one corresponding to the internal rotation of the OH group around the C-O bond with a calculated rotational energy barrier of 2.0 (RHF/6-31G**) and 1.7 [MP2(full)/6-

Figure 1 Geometrical parameters of structures **1**, **3** and **5** corresponding to minima ($\lambda = 0$) on the NH₃···H₂CO PES calculated by the RHF/6-31G** and MP2(full)/6-311++G** (in parentheses). Bond lengths and angles are given in angströms and degrees, respectively.

311++G**] kcal mol⁻¹ and along two parts of the last line passes to minima **5a** and **5b**. From **5a** and **5b** the system proceeds to minima **3a** and **3b** by internal rotation around the C–N bond. Total energy smoothly decreases and the C_s point group of the system (mirror plane containing three atoms N, C and O) conserves along the gradient lines from **2** to **4**. All hessian eigenvectors and eigenvalues correlate along this line: the transition vector of **2** transforms into the hessian eigenvector of the smallest positive eigenvalue at **4**, the eigenvector of the smallest positive hessian eigenvalue at **2** transforms into transition vector at **4**. This pathway differs slightly from that calculated by Williams. ¹⁰ The difference, it seems, is due to the fact that Williams did not study a continuous reaction path from **2** to **3** on the PES.

Thus, according to *ab initio* calculations performed, the NH₃···H₂CO PES topology in the configuration region of the nucleophilic addition reaction $1 \rightleftharpoons 2 \rightleftharpoons 4 \rightleftharpoons 5a$, b is rather complicated. To elucidate the behaviour of all gradient lines on the PES in reaction region and compare those with the gradient line reaction path, a two-dimensional analytic function $V(R,\varphi)$ consisting of eleven (i=11) gaussian functions $V(R,\varphi) = \sum a_i \exp[-(R-R_i)^2 - (\varphi-\varphi_i)^2]$ was constructed. Values R and φ define the N–C distance and the rotation angle of OH around the C–O bond, respectively. Constants a_i , R_i and φ_i are chosen so that the location, λ , and relative energies of stationary

Figure 2 Geometrical parameters of transition state structures **2** and **4** corresponding to saddle points $(\lambda = 1)$ on the NH₃···H₂CO PES calculated by the RHF/6-31G** and MP2(full)/6-311++G** (in parentheses). Bond lengths and angles are given in angströms and degrees, respectively.

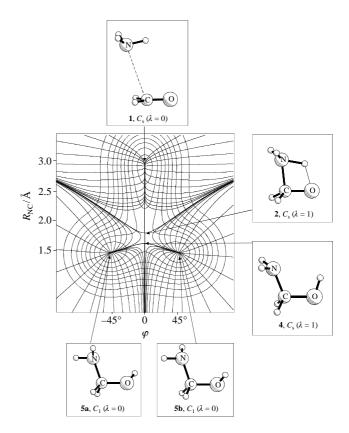


Figure 3 Two-dimensional map of $V(R,\varphi)$ approximating the $\mathrm{NH_3\cdots H_2CO}$ PES in reaction region of $\mathrm{NH_3}$ addition to formaldehyde. Closed thin lines denote equipotential lines, thin lines orthogonal to equipotential lines are gradient lines (orthogonal trajectories). Gradient line reaction path consists of two lines 1 = 2 = 4 and 5a = 2 = 4 = 5b from which the first corresponds to addition reaction and the second to internal rotation of OH group around C–O bond. R_{NC} denotes the N–C distance and φ is the rotational angle. Angle $\varphi = 0^{\circ}$ corresponds to eclipsed conformation 4.

points 1, 2, 4 and 5a,b on $V(R,\varphi)$ are close to those on the $NH_3\cdots H_2CO$ PES. As can be seen from the map of $V(R,\varphi)$ presented in Figure 3, all gradient lines originate or disappear only at stationary points ($\nabla E=0$) or pass to infinity. 12 Gradient lines can not originate or disappear at regular points ($\nabla E\neq 0$). There exists a unique gradient line which goes from minimum 1 and passes via the first saddle point 2 and then further enters neighbouring saddle point 4. Only one gradient line corresponding to the internal rotation of the OH group around the C-O bond in 5 connects minima 5a to 5b and passes via saddle point 4.

Thus, the gradient line reaction path of NH_3 nucleophilic addition to H_2CO consists of two different gradient lines, one of which passes two successive saddle points 2 and 4 and further goes to infinity avoiding any minima and the other connects two minima 5a and 5b passing via saddle point 4 and corresponds to the internal rotation in 5.

The authors thank the Ministry of General and Professional Education of the Russian Federation (grant no. 95-0-9.1-70) for financial support of the present work.

References

- W. P. Jencks, Catalysis in Chemistry and Biochemistry, McGraw-Hill, New York, 1969.
- 2 V. I. Minkin, B. Ya. Simkin and R. M. Minyaev, Quantum Chemistry of Organic Compounds. Mechanisms of Reactions, Springer-Verlag, Berlin, 1990.
- 3 H. B. Burgi, J. D. Dunitz, J. M. Lehn and G. Wipff, *Tetrahedron*, 1974, 30, 1563.
- 4 Y.-T. Chang and G. H. Loew, J. Am. Chem. Soc., 1994, 116, 3548.
- 5 L. Pardo, R. Osman, H. Weinstein and J. R. Rabinowitz, J. Am. Chem. Soc., 1993, 115, 8263.

- J. L. Wilbur and J. I. Brauman, J. Am. Chem. Soc., 1994, 116, 5839.
 O. N. Ventura, E. L. Coitino, A. Lledos and J. Bertran, J. Comput.
- Chem., 1992, 13, 1037.S. Scheiner, W. N. Lipscomb and D. A. Kleier, J. Am. Chem. Soc., 1976, 98, 4770.
- H. Yamataka, S. Nagase, T. Ando and T. Nanafusa, J. Am. Chem. Soc., 1986, 108, 601.
- 10 I. H. Williams, J. Am. Chem. Soc., 1987, 109, 6299.
- 11 C. Kozmutza, E. M. Evleth and E. Kapuy, *J. Mol. Struct.* (*Theochem*), 1991, **233**, 139.
- 12 R. M. Minyaev, Int. J. Quant. Chem., 1994, 49, 105.
- 13 J. B. Foresman and E. Frisch, *Exploring Chemistry with Electronic Structure Methods*, 2nd edn., Gaussian, Inc., Pittsburg, 1996.
- 14 M. J. Frish, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Peterson, J. A. Montgomery, K. Raghavachari, M. A. AlLaham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian-94, Revision B.3, Gaussian, Inc., Pittsburg, 1995.

Received: Moscow, 13th March 1997 Cambridge, 2nd April 1997; Com. 7/01775H